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Abstract. In this work, the mass of the strange quark is calculated from QCD sum rules for the divergence
of the strangeness-changing vector current. The phenomenological scalar spectral function which enters
the sum rule is determined from our previous work on strangeness-changing scalar form factors [1]. For the
running strange mass in the MS scheme, we find ms(2GeV) = 99±16MeV. Making use of this result and the
light quark mass ratios obtained from chiral perturbation theory, we are also able to extract the masses of
the lighter quarks mu and md. We then obtain mu(2GeV) = 2.9±0.6MeV and md(2GeV) = 5.2±0.9MeV.
In addition, we present an updated value for the light quark condensate.

1 Introduction

Together with the strong coupling constant, quark masses
are fundamental QCD input parameters of the standard
model, and thus their precise determination is of para-
mount importance for present day particle phenomenol-
ogy. In the light quark sector, the mass of the strange
quark ms deserves particular interest, because its present
uncertainty severely limits the precision of current predic-
tions of the CP -violating observable ε′/ε. The ratios of
light quark masses are known rather precisely from chiral
perturbation theory χPT [2,3], and thus, once the abso-
lute scale is set by ms, also the masses of the lighter up
and down quarks can be determined.

Until today, two main methods have been employed to
determine the strange quark mass. QCD sum rules [4–7]
have been applied to various channels containing strange
quantum numbers, in particular the scalar channel that
will be the subject of this work [8–15], the pseudoscalar
channel [16], the Cabibbo suppressed τ -decay width [17–
23], as well as the total e+e− cross section [24–27]. Also
lower bounds on the strange mass have been determined in
the framework of QCD sum rules [28–31,16]. In addition,
lattice QCD simulations for various hadronic quantities
have been used to extract the strange quark mass. For
two recent reviews where original references can be found,
the reader is referred to [32,33].

The dispersive QCD sum rule approach makes use of
the phenomenological knowledge on the spectral functions
associated with hadronic currents with the corresponding
quantum numbers. From the experimental point of view
at present the cleanest information comes from τ decays
[19]; however, up to now the Cabibbo suppressed hadronic
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τ -decay data has not been resolved into separate J = 0
and J = 1 contributions and the theoretical uncertainties
associated with a bad perturbative behaviour of its scalar
component put a limit on the achievable accuracy [17–23].

The more standard analysis of the scalar or pseudo-
scalar currents provides a large sensitivity to light quark
masses. Unfortunately, the rather large uncertainties of
the J = 0 data introduce important systematic errors in
the resulting quark mass determination, which are difficult
to quantify. Previous analyses have used phenomenologi-
cal parameterisations based on saturation by the lightest
hadronic states with the given quantum numbers, some-
times improved with Breit–Wigner and/or Omnès expres-
sions [8–16].

In two recent papers, we have presented very detailed
analyses of S-wave Kπ scattering [34] and the Kπ, Kη and
Kη′ scalar form factors [1], which incorporate the experi-
mental knowledge on the J = 0 Kπ phase shifts as well as
all known theoretical constraints from chiral perturbation
theory, short-distance QCD, dispersive relations, unitarity
and large-Nc considerations. The output of these works is
a rather reliable determination of the scalar spectral func-
tion up to about 2 GeV. This allows us to perform a con-
siderable step forward in the QCD sum rule determination
of light quark masses through the scalar correlators.

The central object which is investigated in the original
version of QCD sum rules [4] is the two-point function
Ψ(p2) of two hadronic currents

Ψ(p2) ≡ i
∫

dx eipx〈Ω|T{j(x)j(0)†}|Ω〉, (1.1)

where Ω denotes the physical vacuum and in our case j(x)
will be the divergence of the strangeness-changing vector
current,
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j(x) = ∂µ(s̄γµq)(x) = i(ms − m̂)(s̄q)(x). (1.2)
Since we work in the isospin limit, q can be either an up-
or down-type quark, and m̂ is the isospin average m̂ =
(mu + md)/2. To a good approximation, Ψ(p2) is thus
given by m2

s times the two-point function of the scalar
current.

Up to a subtraction polynomial, Ψ(p2) satisfies a dis-
persion relation,

Ψ(p2) = Ψ(0) + p2Ψ ′(0) + p4

∞∫
0

ρ(s)
s2(s − p2 − i0)

ds, (1.3)

where ρ(s) ≡ ImΨ(s+i0)/π is the spectral function corre-
sponding to Ψ(s). To suppress contributions in the disper-
sion integral coming from high invariant-mass states, it is
convenient to apply a Borel (inverse Laplace) transforma-
tion to (1.3) [4], which furthermore removes the subtrac-
tions. The left-hand side of the resulting equation is cal-
culable in QCD, whereas under the assumption of quark–
hadron duality, the right-hand side can be evaluated in a
hadron-based picture, thereby relating hadronic quantities
to the fundamental QCD parameters.

Generally, however, from experiments the phenomeno-
logical spectral function ρph(s) is only known from thresh-
old up to some energy s0. Above this value, we shall use
the perturbative expression ρth(s) also for the right-hand
side. This is legitimate if s0 is large enough so that per-
turbation theory is applicable. The central equation of our
sum rule analysis for ms is then

uBu[Ψth(p2)] ≡ uΨ̂th(u) =

s0∫
0

ρph(s)e−s/uds

+

∞∫
s0

ρth(s)e−s/uds, (1.4)

where Bu is the Borel operator, the hat denotes the Borel
transformation, and u is the so-called Borel variable. The
main ingredients in this equation, namely the theoretical
expression for the two-point function as well as the phe-
nomenological spectral function, will be discussed below1.

In addition, it is instructive to investigate the sum
rule which arises by considering the Borel transform of
Ψ(p2)/p2:

uBu

[
1
p2Ψth(p2)

]
≡ Φ̂th(u) =

s0∫
0

ds
s
ρph(s)e−s/u

+

∞∫
s0

ds
s
ρth(s)e−s/u − Ψ(0). (1.5)

The sum rule (1.5) is constructed such that the subtrac-
tion constant Ψ(0) remains. However, from a Ward iden-
tity [35] this constant is related to the following product
of quark masses and quark condensates:

1 Further details on the approach can for example be found
in [9]

Ψ(0) = (ms − m̂)(〈Ω|q̄q|Ω〉 − 〈Ω|s̄s|Ω〉). (1.6)

Note that the quark condensates in (1.6) appear as non-
normal-ordered vacuum averages, and thus Ψ(0) is not
renormalisation group invariant [36,37,10,38]. The corre-
sponding renormalisation invariant quantity involves ad-
ditional quartic quark mass terms [36]. Because of the de-
pendence on Ψ(0), analysing the sum rule of (1.5) would
enable us to obtain information on the quark condensates.
As we shall show in the next section, however, the pertur-
bative expansion for Φ̂th(u) behaves very badly, and thus
such an analysis appears to be questionable. Additional
discussion of Ψ(0) can also be found in [38].

In the next two sections, we present expressions for the
theoretical as well as phenomenological two-point func-
tions which are relevant for the sum rules under investiga-
tion. In Sect. 4, we then discuss the numerical analysis of
the strange mass sum rule. Finally, in our conclusions, we
compare our results with other recent determinations of
ms, calculate the light quark masses mu and md from mass
ratios known from χPT, and update our current knowl-
edge of the quark condensate.

2 Theoretical two-point function

In the framework of the operator product expansion the
Borel transformed two-point function Ψ̂th(u) can be ex-
panded in inverse powers of the Borel variable u:

Ψ̂th(u) = (ms − m̂)2u

×
[
Ψ̂0(u) +

Ψ̂2(u)
u

+
Ψ̂4(u)
u2 +

Ψ̂6(u)
u3

]
. (2.1)

The Ψ̂n(u) contain operators of dimension n, and their
remaining u dependence is only logarithmic. Below, we
shall review explicit expressions for the first two of these
contributions.

The purely perturbative contribution Ψ̂0(u) is pre-
sently known up to O(α3

s ) [39–41] and the expansion in
the strong coupling up to this order reads

Ψ̂0(u) =
3

8π2

[
1 +

(
11
3

+ 2γE

)
a

+
(

5071
144

− 17
24

(π2 − 6γ2
E) +

139
6

γE − 35
2
ζ3

)
a2

+
(

1995097
5184

− π4

36
− 695

48
(π2 − 6γ2

E)

− 221
48

γE(π2 − 2γ2
E) +

2720
9

γE − 475
4

γEζ3 − 61891
216

ζ3

+
715
12

ζ5

)
a3

]
=

3
8π2 [1 + 1.535αs + 2.227α2

s + 1.714α3
s ], (2.2)

where a ≡ αs/π, γE is Euler’s constant and ζz ≡ ζ(z) is
the Riemann ζ-function. In this expression the logarith-
mic corrections have been resummed to all orders, and
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thus the strong coupling αs(u) should be evaluated at the
scale u. Higher order terms are also known in the large-Nf

expansion [42] and partial results are known at order α4
s

[43]. Even for αs(1 GeV) ≈ 0.5 the last term in (2.2) is
only about 20% and the perturbative expansion displays
a reasonable convergence. Because the two-point function
scales as m2

s, the resulting uncertainty for ms from higher
orders is at most 10%. In practice it is much smaller since
the average scale at which the sum rule is evaluated lies
around 1.5 GeV.

The theoretical two-point function Φ̂th(u) of (1.5) has
an operator product expansion which is completely equiv-
alent to (2.1), and the corresponding perturbative contri-
bution takes the form

Φ̂0(u) =
3

8π2

[
1 +

(
17
3

+ 2γE

)
a

+
(

9631
144

− 17
24

(π2 − 6γ2
E) +

95
3
γE − 35

2
ζ3

)
a2

+
(

4748953
5184

− π4

36
− 229

12
(π2 − 6γ2

E)

− 221
48

γE(π2 − 2γ2
E) +

4781
9

γE − 475
4

γEζ3 − 87541
216

ζ3

+
715
12

ζ5

)
a3

]
=

3
8π2 [1 + 2.171αs + 5.932α2

s + 17.337α3
s ]. (2.3)

As is obvious from this expression, the perturbative ex-
pansion for Φ̂0(u) behaves very badly. Even at a scale
u1/2 = 2 GeV, the last two terms are of comparable size
and individually both are larger than 50% of the leading
term. If the logarithmic corrections are not resummed,
the perturbative expansion could be improved by taking
a fixed scale µ. This would shift part of the corrections into
the prefactor (ms − m̂)2. In this case one finds, however,
that for u1/2 in the range 1–2 GeV a reasonable size of the
higher orders is only obtained if µ is much less than 1 GeV.
But then the perturbative contribution is again question-
able. To conclude, the huge perturbative corrections for
Φ̂0(u) prevent us from performing a sum rule analysis of
(1.5).

The next term in the operator product expansion Ψ̂2(u)
only receives contributions proportional to the quark
masses squared. Its explicit expression reads

Ψ̂2(u) = − 3
4π2

{[
1 +

4
3
(4 + 3γE)a

]
(m2

s + m2
u)

+
[
1 +

4
3
(7 + 3γE)a

]
msmu

}
. (2.4)

Already at a scale of u = 1 GeV2 the size of Ψ̂2 is less than
3%, decreasing like 1/u for higher scales. Although it has
been included in the phenomenological analysis, for the
error estimates on the strange quark mass it can be safely
neglected.

The same holds true for the dimension-four operators.
In this case there are contributions from the quark and

gluon condensates as well as quark mass corrections of or-
der m4. Again, at a scale of u = 1 GeV2 the size of Ψ̂4
is well below 1% of the full two-point function, hence be-
ing negligible for the strange mass analysis. Nevertheless,
the dimension-four and in addition also the dimension-six
contributions Ψ̂4 and Ψ̂6 have been included in our numer-
ical investigations. Analytic expressions for these contri-
butions are collected in Sect. 2 of [9].

To calculate the perturbative continuum on the right-
hand side of (1.4), we also need the theoretical spectral
function ρth(s) which is given by

ρth(s) =
3

8π2 (ms − m̂)2s (2.5)

×
[
1 +

17
3
a +

(
9631
144

− 35
2
ζ3 − 17

12
π2

)
a2

+
(

4748953
5184

− 91519
216

ζ3 +
715
12

ζ5 − 229
6

π2 − π4

36

)
a3

]
=

3
8π2 (ms − m̂)2s[1 + 1.804αs + 3.228α2

s + 2.875α3
s ].

Again, the logarithms have been resummed, so that the
coupling and masses are running quantities evaluated at
the scale s. It is possible to calculate the relevant integral
from s0 to infinity in (1.4) analytically. The corresponding
theoretical expressions can be found in [9].

3 Hadronic spectral function

The phenomenological spectral function is obtained by in-
serting a complete set of intermediate states Γ with the
correct quantum numbers in the current product of (1.1),

ρph(s) = (2π)3
∑
Γ

∫
|〈Ω|j(0)|Γ 〉|2δ(p − pΓ ), (3.1)

where s = p2 and the integration ranges over the phase
space of the hadronic system with momentum pΓ . In the
case of the strangeness-changing scalar current, the lowest
lying state which contributes in the sum is the Kπ system
in an S-wave isospin-1/2 state.

Including also the Kη and Kη′ states, the scalar spec-
tral function can be written as

ρph(s) =
3∆2

Kπ

32π2 [σKπ(s)|FKπ(s)|2 + σKη(s)|FKη(s)|2

+σKη′(s)|FKη′(s)|2], (3.2)

with ∆Kπ ≡ M2
K − M2

π . The two-particle phase space
factors σKP (s) take the form

σKP (s) = θ(s − (MK + MP )2) (3.3)

×
√(

1 − (MK + MP )2

s

) (
1 − (MK − MP )2

s

)
,

where P corresponds to one of the states π, η or η′, and
the strangeness-changing scalar form factors FKP (s) are
defined by
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Fig. 1. The strange mass ms(2GeV) as a function of u1/2.
Solid line: central parameters; long-dashed lines: (6.10K4) with
FKπ(∆Kπ) = 1.23 (upper line), (6.10K3) with FKπ(∆Kπ) =
1.21 (lower line); dashed lines: αs(MZ) = 0.1205 (lower line),
αs(MZ) = 0.1165 (upper line); dotted lines: s0 = 4.2GeV2

(upper line), s0 = 5.8GeV2 (lower line)

〈Ω|∂µ(s̄γµu)(0)|KP 〉 ≡ −i

√
3
2
∆KπFKP (s). (3.4)

Experimentally, it has been shown that the S-wave
isospin-1/2 Kπ system is elastic below roughly 1.3 GeV,
and below 2 GeV, Kη′ is the dominant inelastic channel
[44,45]. Thus including these two states should give a good
description of the scalar spectral function below 2 GeV.
For completeness, however, in (3.2) we have also taken into
account the Kη state. Multiparticle states, the lightest of
which is the |Kπππ〉 state, have been neglected in (3.2).
Theoretically, their contributions are suppressed both in
the chiral and large-Nc expansions. Nevertheless, since at
an energy around 2 GeV they should play some role, we
intend to investigate these contributions in the future. Ow-
ing to the positivity of the scalar spectral function, these
additional contributions should slightly increase the value
of the strange quark mass.

In our previous work [1], the scalar form factors FKP (s)
have been determined for the first time from a dispersive
coupled-channel analysis of the Kπ system. As an input
in the dispersion integrals, S-wave KP scattering ampli-
tudes were used which had been extracted from fits to the
Kπ scattering data [44,45] in the framework of unitarised
χPT with explicit inclusion of resonance fields [34]. The
fact that the Kη channel only gives a negligible contribu-
tion to the hadronic spectral function was also corrobo-
rated in [1]. Therefore, making use of the results of [1], we
are in a position to provide the scalar spectral function in
an energy range from threshold up to about 2 GeV.

4 Numerical analysis

Evaluating the sum rule of (1.4) with the theoretical two-
point function of Sect. 2 and the hadronic spectral func-
tion of Sect. 3, the resulting values for the running strange
quark mass ms(2 GeV) as a function of u1/2 are displayed
in Fig. 1. The solid line corresponds to central values for
all input parameters and constitutes our main result. For
m̂, we have used m̂(2 GeV) = 4.05 MeV which arises from

Table 1. Values of the main input parameters and correspond-
ing uncertainties for ms(2GeV). For a detailed explanation see
the discussion in the text

Parameter Value ∆ms [MeV]

ρ
(6.10K4)
ph (s) FKπ(∆Kπ) = 1.23 +14.3

ρ
(6.10K3)
ph (s) FKπ(∆Kπ) = 1.21 −11.6

αs(MZ) 0.1185 ± 0.0020 +5.0
−4.7

O(α3
s )

no O(α3
s )

2×O(α3
s )

+3.3
−3.6

s0 4.2–5.8GeV2 +4.3
−3.5

our analysis of the next section. From the region of maxi-
mal stability of the sum rule (the extremum) which lies in
the region of the K∗

0 (1430) resonance, we extract our cen-
tral value for the strange mass ms(2 GeV) = 99.4 MeV. In
the stability region, the continuum is only about 25% of
the full left-hand side of (1.4), so that it should be under
control. To give an estimation of the uncertainties for ms,
let us discuss the inputs and their variation in more detail.

The dominant source of uncertainty for ms is the ha-
dronic spectral function. To obtain an estimate of the
corresponding error, we have calculated ms from differ-
ent fits for the scalar form factors of [1]. Since the Kη
channel was found to be unimportant, we have only con-
sidered the two-channel spectral functions with contribu-
tions from Kπ and Kη′. As the fits for the form factors,
we utilise here our best fits (6.10K3) and (6.10K4) of [1]2.
As was discussed in detail in [1], however, these fits are
not unique, but can be parametrised by FKπ(∆Kπ) which
should take the value 1.22 ± 0.01. The solid line in Fig. 1
then corresponds to the central value FKπ(∆Kπ) = 1.22
and an average of the spectral functions for (6.10K3) and
(6.10K4). Varying FKπ(∆Kπ) for both fits, the largest ms

is obtained for (6.10K4) with FKπ(∆Kπ) = 1.23 and the
smallest for (6.10K3) with FKπ(∆Kπ) = 1.21. Both cases
are displayed as the long-dashed lines in Fig. 1 and the
variation of ms has been collected in Table 1.

The next-largest uncertainty for ms which is related to
the perturbative expansion results from two sources. On
the one hand there is an error on the input value for αs and
on the other hand, there are unknown higher order cor-
rections. For the strong coupling, we have used the PDG
value [46] and varied αs within its error. The correspond-
ing variation of ms is shown as the dashed line in Fig. 1
where the upper line is the case with αs(MZ) = 0.1165
and the lower line with αs(MZ) = 0.1205. To estimate the
second uncertainty, we have either completely removed the
O(α3

s ) correction or doubled its value. The resulting errors
for ms are presented in Table 1.

Another uncertainty for ms results from a variation
of the continuum threshold s0. Our central value s0 =
4.75 GeV2 has been chosen such as to obtain a maximal
stability of the sum rule in the region of interest. As our
range for s0 we have chosen s0 = 4.2–5.8 GeV2. The lower

2 The strange mass resulting from the fit (6.11K4) of [1] is
practically identical to ms from the fit (6.10K4). Thus, for this
work, we have not considered this fit separately



M. Jamin et al.: Light quark masses from scalar sum rules 241

0.5 1.0 1.5 2.0 2.5 3.0
s

1/2
 [GeV]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
ρ(

s)
x1

03  [G
eV

4 ]

Fig. 2. The theoretical as well as phenomenological spectral
functions used in our ms determination. Solid lines: central
spectral functions; long-dashed lines: ρph(s) for (6.10K4) with
FKπ(∆Kπ) = 1.23 and ρth(s) for ms = 115MeV; dotted lines:
ρph(s) for (6.10K3) with FKπ(∆Kπ) = 1.21 and ρth(s) for
ms = 83MeV

value already lies close to the region of the K∗
0 (1950) res-

onance and around the higher value the third scalar res-
onance would be expected from Regge phenomenology.
Thus the chosen range should be rather conservative and
it is gratifying that the most stable sum rule is reached for
an s0 within this range. The dotted lines in Fig. 1 show
the corresponding variation of ms with s0 = 4.2 GeV2

(upper line) and s0 = 5.8 GeV2 (lower line). Again, the
error on ms from the variation of s0 is listed in Table 1.
Because there is no stability for s0 = 4.2 GeV2, as the
relevant value we have taken ms in the region around
1.6 GeV, where stability occurs for the central parame-
ters. For u1/2 ≥ 2 GeV, the continuum is larger than 50%
of the lhs of (1.4), and there the sum rule becomes unre-
liable.

Except for the quark condensate, which will be dis-
cussed in the next section, the values of the condensate
parameters have been taken according to [9]. However, as
already stressed above, their relevance for the ms determi-
nation is negligible and thus also the corresponding uncer-
tainty. Instanton contributions to the scalar and pseudo-
scalar two-point functions have been considered in [47–51].
In the framework of the instanton-liquid-model [52], in [16]
it was shown that the prediction for ms from scalar Borel
sum rules is only lowered by 2 MeV. In view of the uncer-
tainties from other sources, we have therefore neglected
instanton contributions.

Adding the errors of Table 1 in quadrature, we arrive
at our final result for the strange quark mass:

ms(2 GeV) = 99.4+16.1
−13.5 MeV = 99 ± 16 MeV. (4.1)

To be more conservative, we have taken the larger of the
errors as our final uncertainty for the strange quark mass.

In [9,13] the strange mass was also calculated from the
first moment sum rule which arises by differentiating (1.4)
with respect to u. Performing this exercise here, we find
that the resulting sum rule is less stable and the region of
maximal stability is lowered to about 1 GeV, where per-
turbative as well as power corrections are more important.
Nevertheless, for our central value of s0, ms only decreases

by less than 3 MeV, and if a lower s0 is chosen to get a
more stable sum rule, the resulting value for ms is in com-
plete agreement with (4.1), providing additional support
to our result.

To conclude this section, in Fig. 2, we display a com-
parison of the theoretical as well as phenomenological
spectral functions used in our ms determination. The solid
lines correspond to central spectral functions. The long-
dashed lines show ρph(s) and ρth(s) corresponding to the
largest value of ms, and the dotted lines to the small-
est. In the K∗

0 (1430) resonance region, the hadronic spec-
tral functions differ by almost a factor of two. Thus, if
it would become possible to experimentally measure the
scalar spectral function or FKπ(s) in this region with
smaller uncertainties, the strange mass determination
from scalar sum rules could still be improved.

5 Conclusions

Let us now come to a comparison of our result (4.1) for
the strange quark mass with other recent determinations
of this quantity. A related approach to the one followed
here, also using the scalar sum rule, has been applied in
[12], where ms(2 GeV) = 107 ± 13 MeV was obtained. In
this work, however, the hadronic spectral function ρph(s)
was estimated from the single-channel Omnès form factor
FOmnès

Kπ (s). In view of our discussion about the dependence
of the scalar Kπ form factor on the parametrisation of the
corresponding S-wave I = 1/2 phase shift in the elastic,
single-channel case [1], the error in [12] appears underesti-
mated, although the central values are in good agreement.

The older scalar sum rule analyses of [9–11], on the
other hand, have parametrised the phenomenological spec-
tral function with a Breit–Wigner Ansatz which was nor-
malised to the scalar form factor at the Kπ production
threshold. As was discussed in detail in [14,12], this para-
metrisation overestimates the scalar spectral function, be-
cause in the scalar channel the resonance contribution in-
terferes destructively with the large non-resonant back-
ground. Therefore, the resulting strange mass values
turned out larger than our central result presented here,
and should be discarded in the future. Nevertheless, within
the uncertainties at the time, including O(α3

s ) corrections
the result ms(2 GeV) = 130 MeV [9] still was compatible
with our present finding of (4.1).

Very recently, the determination of the strange mass
from pseudoscalar finite energy sum rules was reanalysed
in [16]. In this case, instanton contributions play some role
and have to be included. The resulting value ms(2 GeV) =
100±12 MeV then is in perfect agreement to our finding of
(4.1). The status of the extraction of ms from the hadronic
e+e− cross section is less clear. Whereas [27] finds a value
of ms(2 GeV) = 129±24 MeV, in [25] it is pointed out that
large isospin breaking corrections significantly lower the
result for the strange mass to about ms(2 GeV) = 95 MeV
and yield considerably larger uncertainties of the order
of 45 MeV. We therefore conclude that further work in
this channel is needed, before a definite conclusion can be
reached.
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The most recent determination of ms from the Cabibbo
suppressed τ -decay width gave ms(2 GeV) = 116+20

−25 MeV
[23], in agreement with (4.1) within the quoted error bars,
although yielding a somewhat larger central value. In ad-
dition to experimental uncertainties and a sizeable sensi-
tivity to the quark-mixing parameter Vus

3, the precision
of the τ -decay value is limited by the bad perturbative be-
haviour of the J = 0 contribution. Our determination of
the scalar spectral function could be used to disentangle
the J = 0 and J = 1 components of the τ data, allowing
for a more accurate determination of ms from the theo-
retically well behaved J = 1 contribution. In any case,
whereas the dominant uncertainty for ms from scalar sum
rules arises from the phenomenological part, in the τ de-
cays it is due to the perturbative expansion, and in this
sense both determinations can be considered as comple-
mentary.

Two recent reviews of determinations of the strange
quark mass from lattice QCD have been presented in [32,
33], with the conclusions ms(2 GeV) = 110 ± 25 MeV and
ms(2 GeV) = 120±25 MeV respectively. The error in these
results is dominated by the uncertainty resulting from dy-
namical fermions, whereas the calculations of ms in the
quenched theory, based for example on the kaon mass,
are already very precise. Generally, in unquenched calcu-
lations the strange mass is found below 100 MeV. Nev-
ertheless, the agreement between lattice QCD and QCD
sum rule determinations of ms is already very satisfactory.

Chiral perturbation theory provides rather precise in-
formation on ratios of the light quark masses. Two partic-
ular ratios are [55]

R ≡ ms

m̂
= 24.4 ± 1.5,

Q2 ≡ (m2
s − m̂2)

(m2
d − m2

u)
= (22.7 ± 0.8)2. (5.1)

From these ratios, one further deduces mu/md = 0.551 ±
0.049 and ms/md = 18.9 ± 1.3, where the uncertainties
have been estimated by assuming Gaussian distributions
for the input quantities. Our central values are in agree-
ment with the results quoted in [55], although we find
somewhat larger errors. The ratio mu/md has also been
calculated in [56] with the result mu/md = 0.46 ± 0.09.
Within the uncertainties, this ratio is compatible with the
previous one. Using the former ratios, together with our
result (4.1) for ms, we obtain for mu and md

mu(2 GeV) = 2.9 ± 0.6 MeV,

md(2 GeV) = 5.2 ± 0.9 MeV. (5.2)

The resulting value for the sum of up and down quark
masses, (mu + md)(2 GeV) = 8.1 ± 1.4 MeV is compati-
ble with the finding (mu + md)(2 GeV) = 9.6 ± 1.9 MeV
[57,58], and in good agreement with the result (mu +

3 The reader should note that a slightly lower central value
for ms is obtained if the value |Vus| = 0.2207 [53,54], and not
the unitarity-constraint fit |Vus| = 0.2225 [46], is used in the τ
sum rule

md)(2 GeV) = 7.8 ± 1.1 MeV [16], both obtained with fi-
nite energy sum rules for the pseudoscalar channel.

The knowledge of the light quark masses also allows
for a determination of the light quark condensate from
the Gell-Mann–Oakes–Renner relation [59]:

(mu + md)〈Ω|q̄q|Ω〉 = −f2
πM

2
π(1 − δπ). (5.3)

The term δπ summarises higher order corrections in the
chiral expansion and also contains the renormalisation de-
pendence mentioned in the introduction [38]. Using a gen-
erous range δπ = 0.05±0.05 for this quantity [38], together
with the quark masses of (5.2) as well as fπ = 92.4 MeV
and Mπ = 138 MeV, we arrive at

〈Ω|q̄q|Ω〉(2 GeV) = −(267 ± 17 MeV)3, (5.4)

which can be considered as an update of previous deter-
minations of the light quark condensate 〈q̄q〉. Since it is
still more common to quote the quark condensate at a
scale of 1 GeV we also provide the corresponding value:
〈q̄q〉(1 GeV) = −(242± 16 MeV)3. This value can be com-
pared with direct determinations of the quark condensate
from QCD sum rules [30].

To conclude, in this work we have determined the
masses of the light up, down and strange quarks. To this
end, first the strange mass ms was evaluated in the frame-
work of QCD sum rules for the scalar correlator with
the result (4.1). Our work improves previous analyses of
this system by calculating the phenomenological spectral
function which enters the sum rule through a dispersive
coupled-channel analysis of the contributing hadronic
states, making use of our recent work [1] on strangeness-
changing scalar form factors. The masses of the up and
down quarks mu and md were then calculated employing
ratios of quark masses known from χPT, together with
our result (4.1) for ms. Our final values for mu and md

have been presented in (5.2).
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